Главная » Лекарства » Обеззараживание питьевой воды пути и перспективы. Физические методы обеззараживания воды, гигиеническая оценка. Другие реагентные способы дезинфекции воды

Обеззараживание питьевой воды пути и перспективы. Физические методы обеззараживания воды, гигиеническая оценка. Другие реагентные способы дезинфекции воды

Обеззараживание воды

Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов, вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физич. воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.

К химическим способам обеззараж-я питьевой воды относят ее обработку окис-ми: хлором, озоном и т. п., а также ионами тяж. металлов. К физическим – обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д. Перед обеззараживанием вода обычно подвергается очистке фильтрацией и (или) коагуляцией, при которой удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов.

Из физических способов обеззараживания питьевой воды наибольшее распространение получило обеззараживание воды ультрафиолетовыми лучами, бактерицидные свойства которых обусловлены действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. В ажно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания.

Основным недостатком метода является полное отсутствие последействия.

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззараживание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Фактором, снижающим эффективность работы установок УФ-обеззараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Обеззараживание питьевой воды ультразвуком основано на способности его вызывать т. н. кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Из физических способов индивидуального обеззараживания воды наиболее распространенным и надежным является кипячение, при котором, кроме уничтожения бактерий, вирусов, бактериофагов, антибиотиков и др. биологических объектов, часто содержащихся в открытых водоисточниках, удаляются растворенные в воде газы и уменьшается жесткость воды. Вкусовые качества воды при кипячении меняются мало.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды. Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим

ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Достаточно новыми способами обеззараживания воды являются электрохимический и электроимпульсный. Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т. п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности. Кроме того, их используют для получения дезинфицирующих растворов – католита и анолита, применяемых в медицинской практике. Что касается заявлений разработчиков об изменении структуры воды и ее чудодейственных свойствах, оставим это без комментариев.

План

Введение.

1. Гигиенические задачи обеззараживания питьевой воды.

2. Реагентные (химические) методы обеззараживания питьевой воды.

2.1 Хлорирование.

2.1.2 Диоксид хлора.

2.1.3 Гипохлорит натрия.

2.2 Озонирование.

2.3 Другие реагентные способы дезинфекции воды.

3. Физические методы обеззараживания питьевой воды.

3.1 Кипячение.

3.2 Ультрафиолетовое облучение.

3.3 Электроимпульсный способ.

3.4 Обеззараживание ультразвуком.

3.5 Радиационное обеззараживание.

3.6 Другие физические методы.

4. Комплексное обеззараживание.

Заключение.

Список литературы.

Введение

Среди многих отраслей современной техники, направленных на повышение уровня жизни людей, благоустройства населенных мест и развития промышленности, водоснабжение занимает большое и почетное место. Ведь вода – это непременная часть всех живых организмов, жизнедеятельность которых без воды невозможна. Для нормального течения физиологических процессов в организме человека и для создания благоприятных условий жизни людей очень важно гигиеническое значение воды. В настоящее время обеспечение населения водой высокого качества стало настоящей проблемой.

Проблема питьевого водоснабжения затрагивает очень многие стороны жизни человеческого общества в течение всей истории его существования. В настоящее время это проблема социальная, политическая, медицинская, географическая, а также инженерная и экономическая. На питьевые и бытовые потребности населения, коммунальных объектов, лечебно-профилактических учреждений, а также на технологические нужды предприятий пищевой промышленности расходуется около 5-6% общего водопотребления. Технически обеспечить подачу такого количества воды нетрудно, но потребности должны удовлетворяться водой определённого качества, так называемой питьевой водой.

Питьевая вода – это вода, отвечающая по своему качеству в естественном состоянии или после обработки (очистки, обеззараживания) установленным нормативным требованиям и предназначенная для питьевых и бытовых нужд человека. Основные требования к качеству питьевой воды: быть безопасной в эпидемическом и радиационном отношении, быть безвредной по химическому составу, обладать благоприятными органолептическими свойствами. Для удовлетворения этих требований в настоящее время используется целый комплекс мер по подготовке питьевой воды.

Конечно, в реках и других водоёмах происходит естественный процесс самоочищения воды. Однако он протекает очень медленно. Реки уже давно не справляются со сбросами сточных вод и другими источниками загрязнения. А ведь уровень бактерицидного воздействия в сточных водах часто превышает норму в тысячи и миллионы раз. Стоки попадают в реки и озёра, а большинство городских водоканалов берут воду именно из них. Таким образом, обязательными процессами в подготовке питьевой воды являются качественная очистка и обеззараживание сточных вод.

Обеззараживанием воды называется процесс уничтожения находящихся там микроорганизмов. В процессе первичной очистки вод задерживаются до 98% бактерий. Но среди оставшихся бактерий, а также среди вирусов могут находиться патогенные (болезнетворные) микробы, для уничтожения которых нужна специальная обработка воды – её обеззараживание.

При полной очистке поверхностных вод обеззараживание необходимо всегда, а при использовании подземных вод – только тогда, когда микробиологические свойства исходной воды этого требуют. Но на практике использование для питья и подземных, и поверхностных вод практически всегда без обеззараживания невозможно.


Вода природных источников питьевого водоснабжения, как правило, не соответствует гигиеническим требованиям к питьевой воде и требует перед подачей населению подготовки - очистки и обеззараживания.

Очистка воды, включающая её осветление и обесцвечивание, является первым этапом в подготовке питьевой воды. В результате её из воды удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов. Но часть патогенных бактерий и вирусов проникает через очистные сооружения и содержится в фильтрованной воде. Для создания надёжного и управляемого барьера на пути возможной передачи через воду кишечных инфекций и других не менее опасных болезней применяется её обеззараживание, т.е. уничтожение живых и вирулентных патогенных микроорганизмов – бактерий и вирусов. Ведь именно микробиологические загрязнения воды занимают первое место в оценке степени риска для здоровья человека. Сегодня доказано, что опасность заболеваний от присутствующих в воде болезнетворных микроорганизмов в тысячи раз выше, чем при загрязнении воды химическими соединениями различной природы. Поэтому обеззараживание до пределов, отвечающих установленным гигиеническим нормативам, является обязательным условием получения воды питьевого качества.

В практике коммунального водоснабжения используют реагентные (хлорирование, озонирование, воздействие препаратами серебра), безреагентные (ультрафиолетовые лучи, воздействие импульсными электрическими разрядами, гамма-лучами и др.) и комбинированные методы обеззараживания воды. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений. Безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями. А в комбинированных методах используются одновременно химическое и физическое воздействия.

При выборе метода обеззараживания следует учитывать опасность для здоровья человека остаточных количеств биологически активных веществ, применяемых для обеззараживания или образующихся в процессе обеззараживания, возможность изменения физико-химических свойств воды (например, образование свободных радикалов). Важными характеристиками метода обеззараживания являются также его эффективность в отношении различных видов микронаселения воды, зависимость эффекта от условий среды.

При химических способах обеззараживания питьевой воды для достижения стойкого обеззараживающего эффекта необходимо правильно определить дозу вводимого реагента и обеспечить достаточную длительность его контакта с водой. Доза реагента определяется пробным обеззараживанием или расчетными методами. Для поддержания необходимого эффекта при химических способах обеззараживания питьевой воды доза реагента рассчитывается с избытком (остаточный хлор, остаточный озон), гарантирующим уничтожение микроорганизмов, попадающих в воду некоторое время после обеззараживания.

При физических способах необходимо подвести к единице объема воды заданное количество энергии, определяемое как произведение интенсивности воздействия (мощности излучения) на время контакта.

Существуют и другие ограничения в использовании того или иного метода обеззараживания воды. На этих ограничениях, а также на достоинствах и недостатках методов обеззараживания мы подробно остановимся ниже.

2.1 Хлорирование

Самый распространенный и проверенный способ дезинфекции воды – первичное хлорирование. В настоящее время этим методом обеззараживается 98,6 % воды. Причина этого заключается в повышенной эффективности обеззараживания воды и экономичности технологического процесса в сравнении с другими существующими способами. Хлорирование позволяет не только очистить воду от нежелательных органических и биологических примесей, но и полностью удалить растворенные соли железа и марганца. Другое важнейшее преимущество этого способа – его способность обеспечить микробиологическую безопасность воды при ее транспортировании пользователю благодаря эффекту последействия.

Существенный недостаток хлорирования – присутствие в обработанной воде свободного хлора, ухудшающее ее органолептические свойства и являющееся причиной образования побочных галогенсодержащих соединений (ГСС). Бόльшую часть ГСС составляют тригалометаны (ТГМ) – хлороформ, дихлорбромметан, дибромхлорметан и бромоформ. Их образование обусловлено взаимодействием соединений активного хлора с органическими веществами природного происхождения. Этот процесс растянут по времени до нескольких десятков часов, а количество образующихся ТГМ при прочих равных условиях тем больше, чем выше рН воды. Для устранения примесей требуется доочистка воды на угольных фильтрах. В настоящее время предельно допустимые концентрации для веществ, являющихся побочными продуктами хлорирования, установлены в различных развитых странах в пределах от 0,06 до 0,2 мг/л и соответствуют современным научным представлениям о степени их опасности для здоровья.

Для хлорирования воды используются такие вещества как собственно хлор (жидкий или газообразный), диоксид хлора и другие хлорсодержащие вещества.

2.1.1 Хлор

Хлор является наиболее распространённым из всех веществ, используемых для обеззараживания питьевой воды. Это объясняется высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента – жидкого или газообразного хлора – и относительной простотой обслуживания.

Очень важным и ценным качеством использования хлора является его последействие. Если количество хлора взято с некоторым расчетным избытком, так чтобы после прохождения очистных сооружений в воде содержалось 0,3–0,5 мг/л остаточного хлора, то не происходит вторичного роста микроорганизмов в воде.

Однако, хлор является сильнодействующим токсическим веществом, требующим соблюдения специальных мер по обеспечению безопасности при его транспортировке, хранении и использовании; мер по предупреждению катастрофических последствий в чрезвычайных аварийных ситуациях. Поэтому ведется постоянный поиск реагентов, сочетающих положительные качества хлора и не имеющих его недостатков.

Одновременно с обеззараживанием воды протекают реакции окисления органических соединений, при которых в воде образуются хлорорганические соединения, обладающие высокой токсичностью, мутагенностью и канцерогенностью. Последующая очистка воды на активном угле не всегда может удалить эти соединения. Кроме того, что эти хлорорганические соединения, обладающие высокой стойкостью, становятся загрязнителями питьевой воды, они, пройдя через систему водоснабжения и канализации, вызывают загрязнение рек вниз по течению.

Присутствие в воде побочных соединений – один из недостатков использования в качестве дезинфектанта газообразного, а равно и жидкого хлора (Cl2).

2.1.2 Диоксид хлора

В настоящее время для обеззараживания питьевой воды также предлагается применение диоксида хлора (ClO2), который обладает рядом преимуществ, таких как: более высокое бактерицидное и дезодорирующее действие, отсутствие в продуктах обработки хлорорганических соединений, улучшение органолептических качеств воды, отсутствие необходимости перевозки жидкого хлора. Однако диоксид хлора дорог и должен производиться на месте по достаточно сложной технологии. Его применение имеет перспективу для установок относительно небольшой производительности.

Действие на болезнетворную флору ClО2 обусловлено не только высоким содержанием при реакции высвобождающегося хлора, но и образующимся атомарным кислородом. Именно это сочетание делает диоксид хлора более сильным обеззараживающим агентом. Кроме того, он не ухудшает вкус и запах воды. Сдерживающим фактором в использовании данного дезинфектанта до последнего времени была повышенная взрывоопасность, осложнявшая его производство, транспортировку и хранение. Однако современные технологии позволяют устранить этот недостаток за счет производства диоксида хлора непосредственно на месте применения.

2.1.3 Гипохлорит натрия

Технология применения гипохлорита натрия (NaClO) основана на его способности распадаться в воде с образованием диоксида хлора. Применение концентрированного гипохлорита натрия на треть снижает вторичное загрязнение, в сравнении с использованием газообразного хлора. Кроме того, транспортировка и хранение концентрированного раствора NaClO достаточно просты и не требуют повышенных мер безопасности. Также получение гипохлорита натрия возможно и непосредственно на месте, путем электролиза. Электролитический метод характеризуют малые затраты и безопасность; реагент легко дозируется, что позволяет автоматизировать процесс обеззараживания воды.

2.1.4 Хлорсодержащие препараты

Применение для обеззараживания воды хлорсодержащих реагентов (хлорной извести, гипохлоритов натрия и кальция) менее опасно в обслуживании и не требует сложных технологических решений. Правда, используемое при этом реагентное хозяйство более громоздко, что связано с необходимостью хранения больших количеств препаратов (в 3–5 раз больше, чем при использовании хлора). Во столько же раз увеличивается объем перевозок. При хранении происходит частичное разложение реагентов с уменьшением содержания хлора. Остается необходимость устройства системы притяжно-вытяжной вентиляции и соблюдения мер безопасности для обслуживающего персонала. Растворы хлорсодержаших реагентов коррозионно-активны и требуют оборудования и трубопроводов из нержавеющих материалов или с антикоррозийным покрытием.

Все большее распространение, особенно на небольших станциях водоподготовки, приобретают установки по производству активных хлорсодержаших реагентов электрохимическими методами. В России несколько предприятий предлагают установки типа «Санер», «Санатор», «Хлорэл-200» для производства гипохлорита натрия методом диафрагменного электролиза поваренной соли.

питьевой водоснабжение обеззараживание

2.2 Озонирование

Преимущество озона (О3) перед другими дезинфектантами заключается в присущих ему дезинфицирующих и окислительных свойствах, обусловленных выделением при контакте с органическими объектами активного атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Кроме уникальной способности уничтожения бактерий, озон обладает высокой эффективностью в уничтожении спор, цист и многих других патогенных микробов. Исторически применение озона началось еще в 1898 г. во Франции, где впервые были созданы опытно-промышленные установки по подготовке питьевой воды.

Количество озона, необходимое для обеззараживания питьевой воды, зависит от степени загрязнения воды и составляет 1–6 мг/л при контакте в 8–15 мин; количество остаточного озона должно составлять не более 0,3–0,5 мг/л, т. к. более высокая доза придает воде специфический запах и вызывает коррозию водопроводных труб.

С гигиенической точки зрения озонирование воды – один из лучших способов обеззараживания питьевой воды. При высокой степени обеззараживания воды оно обеспечивает ее наилучшие органолептические показатели и отсутствие высокотоксичных и канцерогенных продуктов в очищенной воде.

Ограничениями для распространения технологии озонирования являются высокая стоимость оборудования, большой расход электроэнергии, значительные производственные расходы, а также необходимость высококвалифицированного оборудования. Последний факт обусловил использование озона лишь при централизованном водоснабжении. Кроме того, в процессе эксплуатации установлено, что в ряде случаев (если температура обрабатываемой природной воды превышает 22 °С) озонирование не позволяет достичь требуемых микробиологических показателей по причине отсутствия эффекта пролонгации дезинфицирующего воздействия

Метод озонирования воды технически сложен и наиболее дорогостоящ среди других методов обеззараживания питьевой воды.. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это ограничивает использование данного метода в повседневной жизни.

Другим существенным недостатком озонирования явялется токсичность озона. Предельно допустимое содержание этого газа в воздухе производственных помещений - 0,1 г/м3. К тому же существует опасность взрыва озоновоздушной смеси.

Существующие конструкции современных озонаторов представляют собой большое количество близко расположенных ячеек, образованных электродами, один из которых находится под высоким напряжением, а второй – заземлен. Между электродами с определенной периодичностью возникает электрический разряд, в результате которого в зоне действия ячеек из воздуха образуется озон. Полученной озоновоздушной смесью барботируют обрабатываемую воду. Подготовленная таким образом вода по вкусу, запаху и другим свойствам превосходит воду, обработанную хлором.

2.3 Другие реагентные способы дезинфекции воды

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром, например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

3.1 Кипячение

Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение.

При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения.

Кроме того, при кипячении воды удаляются растворенные в ней газы и уменьшается жесткость. Вкусовые качества воды при кипячении меняются мало. Правда для надежной дезинфекции рекомендуется кипятить воду в течение 15 - 20 минут, т.к. при кратковременном кипячении некоторые микроорганизмы, их споры, яйца гельминтов могут сохранить жизнеспособность (особенно если микроорганизмы адсорбированы на твердых частицах). Однако применение кипячения в промышленных масштабах, конечно же, не представляется возможным ввиду высокой стоимости метода.

3.2 Ультрафиолетовое излучение

Обработка УФ-излучением – перспективный промышленный способ дезинфекции воды. При этом применяется свет с длиной волны 254 нм (или близкой к ней), который называют бактерицидным. Дезинфицирующие свойства такого света обусловлены их действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. При этом бактерицидный свет уничтожает не только вегетативные, но и споровые формы бактерий.

Современные установки УФ-обеззараживания имеют производительность от 1 до 50 000 м3/ч и представляют собой выполненную из нержавеющей стали камеру с размещенными внутри УФ-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, непрерывно подвергается облучению ультрафиолетом, который убивает все находящиеся в ней микроорганизмы. Наибольший эффект обеззараживания питьевой воды достигается при расположении УФ-установок после всех других систем очистки, как можно ближе к месту конечного потребления.

Этот способ приемлем как в качестве альтернативы, так и дополнения к традиционным средствам дезинфекции, поскольку абсолютно безопасен и эффективен.

Важно отметить, что в отличие от окислительных способов при УФ-облучении не образуются вторичные токсины, и поэтому верхнего порога дозы ультрафиолетового облучения не существует. Увеличением дозы почти всегда можно добиться желаемого уровня обеззараживания.

Кроме того УФ-облучение не ухудшает органолептические свойства воды, поэтому может быть отнесено к экологически чистым методам ее обработки.

Вместе с тем, и этот способ имеет определенные недостатки. Подобно озонированию, УФ-обработка не обеспечивает пролонгированного действия. Именно отсутствие последействия делает проблематичным ее применение в случаях, когда временной интервал между воздействием на воду и ее потреблением достаточно велик, например в случае централизованного водоснабжения. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Кроме того, возможны реактивация микроорганизмов и даже выработка новых штаммов, устойчивых к лучевому поражению.

Этот способ требует строжайшего соблюдения технологии,

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззараживание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки.

Фактором, снижающим эффективность работы установок УФ-обеззараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Другим фактором, снижающим эффективность УФ-обеззараживания, является мутность исходной воды. Рассеивание лучей значительно ухудшает эффективность обработки воды.

3.3 Электроимпульсный способ

Достаточно новым способом обеззараживания воды является электроимпульсный способ - использование импульсивных электрических разрядов (ИЭР).

Сущность метода заключается в возникновении электрогидравлического удара, так называемого эффекта Л. А. Юткина.

Технологический процесс состоит из шести ступеней:

подача жидкости в рабочий объём при равномерном профиле распределения скорости (причём рабочий объём заполняют с воздушным промежутком, а равномерный профиль распределения жидкости помогает уменьшить энергоёмкость процесса),

зарядку накопителя электроэнергии в режиме постоянной мощности,

инициирование одного или серии электрических разрядов в жидкости при скорости нарастания переднего фронта напряжения не менее 1010 В/с (энергию дозируют путём отсчёта зарядов),

усиление эффекта разрушения микроорганизмов за счет формирования волн растяжения при отражении волн сжатия, образованных электрическим разрядом от свободной поверхности жидкости,

подавление или гашение ударных волн в подводящих и отводящих жидкость магистралях для исключения их разрушения,

отведение обеззараженной жидкости из рабочего объёма.

Кроме того, в частном случае возможно инициирование электрических разрядов в объеме, отделенном от рабочего объема средой, сохраняющей или увеличивающей амплитуду волн сжатия. Примером материала, являющегося средой, сохраняющей амплитуду волны на границе с водой, может быть пенополистирол.

В процессе обеззараживания питьевой воды электроимпульсным способом происходит большое количество явлений: мощные гидравлические процессы, образование ударных волн сверхвысокого давления, образование озона, явления кавитации, интенсивные ультразвуковые колебания, возникновение импульсивных магнетических и электрических полей, повышение температуры. Результатом всех этих явлений является уничтожение в воде практически всех патогенных микроорганизмов. Очень важно заметить, что вода, обработанная ИЭР, приобретает бактерицидные свойства, которые сохраняются до 4 мес.

Основным преимуществом электроимпульсного способа обеззараживания питьевой воды является экологическая чистота, а так же возможность использования в больших объемах жидкости.

Однако этот способ имеет ряд недостатков, в частности относительно высокую энергоемкость (0,2-1 кВтч/м3) и, как следствие – дороговизну.

Электрохимический метод.

Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т.п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности.

3.4 Обеззараживание ультразвуком

В некоторых случаях для обеззараживания воды используется ультразвук. Впервые этот метод был предложен в 1928 г. Механизм действия ультразвука до конца неясен. По этому поводу высказываются следующие предположения:

Ультразвук вызывает образование пустот в сильно завихренном пространстве, что ведет к разрыву клеточной стенки бактерии;

Ультразвук вызывает выделение растворенного в жидкости газа, а пузырьки газа, находящиеся в бактериальной клетке, вызывают ее разрыв.

Преимуществом использования ультразвука перед многими другими средствамиобеззараживания сточных водслужит его нечувствительность к таким факторам, как высокая мутность и цветность воды, характер и количество микроорганизмов, а также наличие в воде растворенных веществ.

Единственный фактор, который влияет на эффективностьобеззараживания сточных вод ультразвуком - это интенсивность ультразвуковых колебаний. Ультразвук - это звуковые колебание, частота которых находится значительно выше уровня слышимости. Частота ультразвука от 20000 до 1000000 Гц, следствием чего и является его способность губительным образом сказываться на состоянии микроорганизмов. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Обеззараживание и очистка водыультразвуком считается одним из новейших методов дезинфекции. Ультразвуковое воздействие на потенциально опасные микроорганизмы не часто применяется в фильтрахобеззараживания питьевой воды, однако его высокая эффективность позволяет говорить о перспективности этого метода обеззараживания воды, не смотря на его дороговизну.

3.5 Радиационное обеззараживание

Имеются предложения использования для обеззараживания воды гамма-излучения.

Гамма-установки типа РХУНД работают по следующей схеме: вода поступает в полость сетчатого цилиндра приёмно-разделительного аппарата, где твёрдые включения увлекаются вверх шнеком, отжимаются в диффузоре и направляются в бункер – сборник. Затем вода разбавляется условно чистой водой до определённой концентрации и подаётся в аппарат гамма-установки, в котором под действием гамма излучения изотопа Со60 происходит процесс обеззараживания.

Гамма-излучение оказывает угнетающее действие на активность микробных дегидраз (ферментов). При больших дозах гамма-излучения погибает большинство возбудителей таких опасных заболеваний как тиф, полиомиелит и др.

3.6 Другие физические методы

К физико-химическим методам обеззараживания воды следует отнести использование с этой целью ионообменных смол. G.Gillissen (1960) показал способность анионообменных смол освобождать жидкость от бактерий группы соli. Возможна регенерация смолы. У нас Е.В.Штанников (1965) установил возможность очистки воды от вирусов ионообменными полимерами. По мнению автора этот эффект связан как с сорбцией вируса, так и с его денатурацией за счет кислотной или особенно щелочной реакции. В другой работе Штанникова указывается на возможность обеззараживания воды ионактивными полимерами, где находится токсин ботулизма. Обеззараживание происходит за счет окисления токсина и его сорбции.

Помимо указанных выше физических факторов изучалась возможность обеззараживания воды токами высокой частоты, магнитной обработкой.


Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды. Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Заключение

Защита водных ресурсов от истощения и загрязнения и их рациональное использование для нужд народного хозяйства – одна из наиболее важных проблем, требующих безотлагательного решения.

Предприятия, осуществляющие забор воды из водоисточников, ее очистку, по уровню решаемых задач и обороту денежных средств занимают одно из ведущих мест в регионе. А стало быть эффективность использования материальных ресурсов в данной отрасли так или иначе сказывается на общем уровне благосостояния и здоровья людей, проживающих на данной территории. Рациональное, т.е. организованное с соблюдением санитарных правил и нормативов, питьевое водоснабжение помогает избегать различных эпидемий, кишечных инфекций. Химический состав питьевой воды также немаловажен для здоровья человека.

В современных условиях обеззараживание стало чуть ли не единственным обязательным процессом в многоступенчатой системе очистки воды питьевого водоснабжения. Коагулирование и фильтрование воды через песок освобождают ее от суспендированных примесей и частично снижают ее бактериальную загрязненность. Но только обеззараживанием воды можно на 98% очистить воду от патогенных (болезнетворных) микроорганизмов.

Постоянное совершенствование методов и средств, с помощью которых осуществляется дезинфекция, вызвано двумя факторами: развитием у микроорганизмов резистентности не только к антибиотикам, но и дезинфицирующим средствам, а также несовершенством используемых дезинфицирующих средств. Следует учитывать и то, что возможно и вторичное загрязнение уже подготовленной воды при транспортировке её по трубам распределительной сети.

В связи с этим поиск и внедрение наиболее рационального способа обеззараживания воды из проблемы актуальной переходит в раздел социально значимых.

Постоянное совершенствование дезинфицирующих средств приведёт к созданию новых, эффективных и безопасных соединений. Уже сейчас разрабатываются новые дезинфицирующие средства на основе таких традиционных групп химических соединений, как спирты, альдегиды, фенолы, перекиси, ПАВ и хлорсодержащие вещества. Кроме того, постоянно разрабатывается возможность их соединения для создания композитного дезинфицирующего средства.

Обеззараживание является заключительным этапом подготовки воды питьевой кондиции и должно обеспечивать эпидемиологическую безопасность населения.

Питьевая вода – это важнейший фактор здоровья и благополучия человека.

Мировой и отечественный опыт доказывает, что при использовании передовых технологий и оборудования качество воды (практически независимо от исходных ее характеристик) начинает соответствовать самым строгим нормативным требованиям. Это позволяет не только эффективно использовать естественные источники, но и успешно применять схемы рециркуляции. Такой подход, несомненно, поможет снизить антропогенную нагрузку с окружающей среды и сберечь ее для потомков.

Проблема обеззараживания воды стоит сегодня тем более остро, что качество ее в природных источниках неуклонно ухудшается. В государственном докладе «Вода питьевая» отмечено, что около 70 % рек и озер страны утратили свое качество как источники водоснабжения, а приблизительно 30 % подземных источников подверглись природному или антропогенному загрязнению. Около 22 % проб питьевой воды, отбираемых из водопроводов, не отвечают гигиеническим требованиям по санитарно-химическим нормам, а более 12 % – по микробиологическим показателям.

Список литературы

1. Водоснабжение. Проектирование систем и сооружений: В 3-х т. – Т. 2. Очистка и кондиционирование природных вод / Научно-методическое руководство и общая редактора докт. техн. наук, проф. Журбы М.Г. Вологда-Москва: ВоГТУ, 2001. – 324 с.

2. Мазаев В.Т., Корлёв А.А., Шлепнина Т.Г. Коммунальная гигиена / Под ред. В.Т. Мазаева. – 2-е изд., испр. и доп. – М.: ГЭОТАР-Медиа, 2005. – 304 с.

3. Яковлев С.В, Воронов Ю.В. Водоотведение и очистка сточных вод / Учебник для вузов: - М.: АСВ, 2002 - 704 с.

Обеззараживание (дезинфекция) питьевой воды осуществляется с целью обеспечения эпидемической безопасности питьевой и предотвращения передачи через воду возбудителей инфекционных заболеваний. Обеззараживание направлено на уничтожение патогенных и условно-патогенных микроорганизмов. В целях обеззараживания применяют реагентные (химические) и безреагентные (физические) методы.

Реагентные методы основаны на использовании сильных окислителей (хлора, хлорсодержащих веществ, озона), ионов серебра и других веществ.

К безреагентным методам относятся: ультрафиолетовое облучение, воздействие ультразвука, вакуума, радиоактивное излучение то есть физические методы, а также термическая обработка. На водопроводах обычно обеззараживание воды осуществляется на последнем этапе ее очистки перед поступлением в резервуары чистой воды и разводящую водопроводную сеть. Выбор конкретного метода обеззараживания зависит от качества и количества исходной воды, методов ее предварительной очистки, условий поставки реагентов и других факторов.

Хлорирование - обработка питьевой воды водным раствором хлора с целью ее обеззараживания. Этот метод стал наиболее широко распространен среди всех методов обеззараживания воды. Это связано с относительной дешевизной хлора, несложностью используемого оборудования и надежностью обеззараживающего действия.

При обычных температуре и давлении хлор - газ желто-зеленого цвета с резким специфическим запахом. Раздражает слизистые оболочки, глаза, относится к сильнодействующим ядовитым веществам (СДЯВ) и при выбросе в воздух способен вызвать отравления людей.

Хлор можно использовать для обеззараживания воды на различных сооружениях - от шахтного колодца до крупного водопровода. В целях обеззараживания воды могут применяться газообразный хлор (доставляется в баллонах в жидком состоянии), хлорная известь, гипохлорит кальция, хлорамины, двуокись хлора и другие хлорсодержащие вещества.

Основными условиями действия хлора являются: тщательное освобождение воды от взвешенных веществ, достаточная доза хлора, полное и быстрое перемешивание хлора со всем объемом обеззараживаемой воды и контакт хлора с водой не менее 30-60 мин времени, необходимого для проявления бактерицидного действия. Для обеспечения надежного обеззараживания необходимо ввести его такое количество, чтобы покрыть всю хлорпоглощаемость воды и получить некоторый избыток свободного активного хлора. Об успешности хлорирования воды судят по остаточному активному хлору. Установлено, что дозы хлора в воде 1-3 мг/л обычно обеспечивают достаточный бактерицидный эффект. При этом содержание остаточного свободного хлора в воде после резервуаров чистой воды должно быть в пределах 0,3-0,5 мг/л. Такое хлорирование называется обычным, или хлорированием с учетом хлорпотребности.

Хлорпоглощаемость воды - количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 минут.

Дезинфекция и обеззараживание воды - это один и тот же процесс. Он направлен на полное или частичное уничтожение содержащихся в жидкости вирусов, бактерий, очищение ее от пыли, мусора и проч. Цель мероприятия - защитить человека от вирусных и инфекционных заболеваний, пищевых отравлений, глистной инвазии. В статье мы познакомим вас с несколькими способами обеззараживания воды - традиционными и инновационными, промышленными и пригодными для применения в полевых условиях.

Методы очистки

Прежде всего, отметим факт, что полное очищение от всех содержащихся в ней элементов (в том числе и бактерий) сделает жидкость полностью непригодной для питья и приготовления пищи. Оттого нужно с толком выбирать способ обеззараживания воды, быть уверенными в его качественном воплощении.

Дезинфекции всегда должно предшествовать химико-биологическое исследование жидкости. Уже на основе его результатов выбирают один из методов обеззараживания:

  • Химический, реагентный.
  • Комбинированный.
  • Безреагентный, физический.

Каждый из них - это способ обеззараживания воды, но по собственной определенной методике. Например, химический - это воздействие с помощью реагентов-коагулянтов, физические методы - безреагентное воздействие. Выделяются еще и инновационные, которые мы обязательно разберем на протяжении материала.

Интересно применение комбинированных методов - это применение и физического, и химического очищения попеременно. Считается на сегодня самым эффективным в дезинфекции - не только позволяет избавиться от бактерий, но и помогает не допустить их повторного визита. Применение нескольких способов обеззараживания воды - это и гарантия ее очистки от максимального количества загрязнителей.

Химические способы

В частности, это обработка жидкости различными веществами - химическими коагулянтами. Наиболее распространены:

  • хлор;
  • озон;
  • гипохлорит натрия;
  • ионы металлов и проч.

Эффективность этих способов обеззараживания питьевой воды зависит от максимально точно определенной дозы воздействующего реагента, от должного времени его контакта с очищаемой жидкостью.

Подходящую дозировку определяют как системой расчетов, так и пробной дезинфекцией, после которой воду берут на анализ. Важно не просчитаться и в том плане, что малая доза химических реагентов не только бессильна против вирусов и инфекций, но и может поспособствовать повышению их активности. Например, тот же озон в небольших количествах убивает лишь часть бактерий, выделяя особые соединения, что пробуждают спящие микроорганизмы, стимулируя их на ускоренное размножение.

Отсюда дозу всегда рассчитывают с избытком. Но одно дело - способы а другое дело - питьевых. Избыток должен в последнем случае быть таким, чтобы не вызвать у употребляющих жидкость людей отравление дезинфицирующими веществами.

Предлагаем вам подробнее ознакомиться с химической методикой.

Хлорирование

Если попросить обывателей: "Укажите самый простой способ обеззараживания воды", многие сразу же отметят хлорирование. И неспроста - как метод дезинфекции оно очень распространено в России. Объясняется это несомненными плюсами хлорирования:

  • Простота в использовании и обслуживании.
  • Низкая цена действующего вещества.
  • Высокая эффективность.
  • Последующий после применения эффект - вторичный рост микроорганизмов не происходит даже при минимальном избытке дозы хлора.
  • Контроль за запахом, вкусовыми качествами воды.
  • Поддержка чистоты фильтров.
  • Препятствие образованию водорослей.
  • Разрушение сероводорода, удаление железа и марганца.

Однако у средства есть и свои минусы:

  • При окислении обладает высокой степенью токсичности, мутагенности, канцерогенности.
  • Последующая после хлора очистка жидкости активированным углем не спасает ее полностью от образованных хлорированием соединений. Высокостойкие, они могут сделать питьевую воду непригодной для питья, засорять реки и иные природные водоемы по течению стоков.
  • Образование тригалометанов, оказывающих канцерогенное воздействие на человеческий организм. Именно они способствуют росту раковых клеток. А кипячение, самый простой способ обеззараживания воды, усугубляет ситуацию. В хлорированной жидкости после него образуется диоксин - опасное ядовитое вещество.
  • Исследования показывают, что хлорированная вода способствует также развитию заболеваний сосудов, ЖКТ, печени, сердца, гипертонии, атеросклероза. Негативно сказывается на состоянии кожи, волос и ногтей. Разрушает в организме белок.

На сегодня современной заменой является более эффективный в обеззараживании. Но существенный минус - его нужно применять сразу на месте производства.

Озонирование

Многие считают самым надежным способом обеззараживания воды именно озонирование. Газ озон способен разрушать ферментную систему микробной, вирусной клетки, окислять некоторые соединения, придающие жидкости неприятный запах.

Достоинства метода следующие:

  • Быстрая дезинфекция.
  • Максимально безопасное для человека и окружающей среды обеззараживание.

При этом у озонирования есть и ряд недостатков:

  • При неправильной дозировке у воды отмечается неприятный запах.
  • Избыток озона способствует усиленной коррозии металла. Это касается и водопроводных труб, и бытовой техники, посуды. Нужно выждать период распада газа, прежде чем пускать воду по трубам.
  • Довольно дорогой в применении метод - необходимы большие растраты электроэнергии, сложное оборудование, высококвалифицированный обслуживающий персонал.
  • Газ в процессе производства токсичен и взрывоопасен. Относится к первому классу опасности.
  • После проведения озонирования возможно повторное размножение бактерий. Нет гарантии 100 % очистки воды.

Полимерные антисептики

Еще один популярный химический способ - использование полимерных реагентов. Самым известным на сегодня является "Биопаг". Чаще всего его применяют в общественных бассейнах, аквапарках.

Достоинства этого способа очистки и обеззараживания воды:

  • Не наносит вреда здоровью человека и животных.
  • Не придает воде определенный запах, вкус или цвет.
  • Довольно прост в использовании.
  • Не оказывает коррозионного влияния на металл.
  • Не вызывает аллергических реакций.

Недостатки - может раздражать кожу, слизистую оболочку.

Прочие химические способы

Какие способы обеззараживания воды можно назвать в данном случае? Это несколько вариантов:

  • Дезинфекция при помощи ионов тяжелых металлов, йода, брома.
  • Обеззараживание при помощи ионов благородных металлов. Чаще всего используется серебро.
  • Использование сильных окислителей. Частым примером тут будет гипохлорит натрия.

Физические способы

Сюда будут относиться нехимические способы воздействия на микроорганизмы в жидкости. Их применению чаще всего предшествует фильтрация и Это удаляет взвешенные частицы, яйца глистов, внушительную часть находящихся в жидкости микробов.

Самые распространенные способы:

  • Воздействие ультрафиолетового излучения.
  • Воздействие ультразвука.
  • Кипячение. Эффективный способ обеззараживания воды в природных условиях.

Давайте разберем каждый из них более подробно.

УФ-облучение

Важно рассчитать необходимую долю воздействующей энергии на определенный объем воды. Для этого перемножают мощность излучения и время контакта с жидкостью. Важно предварительно определить концентрацию микроорганизмов в 1 мл воды, число индикаторных бактерий (в частности, кишечной палочки).

Отметим, что УФ-лучи будут пагубно воздействовать на микроорганизмы лучше хлора. Озон же по результатам очистки будет равен по эффективности облучению. УФ-лучи воздействуют и на ферментный обмен, и на клеточные структуры бактерий и вирусов. Что важно, уничтожают вегетативные,споровые формы.

Достоинства метода такие:

  • Нет верхнего порога дозы, так как подобное облучение не образует в воде токсических соединений. Увеличивая ее, можно постепенно добиться самых лучших результатов.
  • Отлично подходит для индивидуального пользования.
  • Большой срок службы УФ-лампы - несколько тысяч часов.

Но есть и недостатки:

  • Нет последствия мероприятия - чтобы воспрепятствовать возвращению микроорганизмов, воду следует обеззараживать периодически и систематически, не выключая установку.
  • Кварцевые лампы порой загрязняются отложениями минеральных солей. Однако этому легко воспрепятствовать с помощью обычной пищевой кислоты.
  • Обязательна предварительная очистка воды от взвешенных в ней частиц - экранизируя лучи, они сводят "на нет" весь процесс.

Способ обеззараживания воды в полевых условиях с помощью УФ-излучения продемонстрирован на картинке.

Ультразвук

Действие тут основано на кавитации. Так называется способность ряда звуковых частот образовать пустоты, создающие большую разницу в давлении.Этот диссонанс приводит к разрыву клеточных оболочек вирусов, бактерий, что ведет к гибели микроорганизмов. Эффективность зависит от интенсивности колебаний звука.

Такой метод мало распространен в первую очередь из-за своей дороговизны. Необходимо определенное оборудование, специально подготовленный персонал. Важно помнить о том, что опасен ультразвук для бактерий только на определенных частотах. Низкие волны, напротив, способны вызвать ускорение роста числа микроорганизмов в воде.

Кипячение

Самый простой и распространенный способ обеззараживания воды в полевых условиях - это, конечно, кипячение. Его популярность и общепризнанность основывается на многих факторах:

  • Уничтожение в жидкости практически всех вредоносных микроорганизмов - вирусов, бактерий и бактериофагов, антибиотиков и проч.
  • Доступность - нужен источник тепла, способный разогреть воду до 100 градусов по Цельсию, и жаропрочная емкость.
  • Не влияет на вкусовые качества жидкости, ее цвет и запах.
  • Устраняет растворенные в воде газы.
  • Отлично борется с жесткостью жидкости, смягчает ее.

Комплексные способы очистки

От простых способов обеззараживания воды перейдем к комплексным, что являются самыми эффективными в ряде случаев. Например, это сочетание УФ-облучения и хлорирования, озонирования и хлорирования (препятствие вторичному заражению), безреагентные и реагентные методы.

В эту же категорию часто относят и фильтрование. Но с той особенностью, что каждая ячейка фильтра по размерам должна быть меньше, чем отсеиваемые микроорганизмы. А это значит, что ее диаметр не должен превышать 1 микрон. Но таким образом можно бороться только с бактериями. Против вирусов применяют более микроскопические поры - с диаметром менее 0,1-0,2 мкм.

На современном рынке популярна система фильтрации под названием "Пурифайер". Устройство отличается тем, что использует несколько систем фильтрации воды, ее обеззараживания. Некоторые модели дополнительно могут охлаждать воду до 4 градусов и нагревать до 95 градусов.

Установка применима и в промышленных, и в офисных, домашних масштабах. К водопроводной трубе ее достаточно просто подсоединить пластиковым переходником. Производители уверяют, что приобретение, подключение и работа "Пурифайера" будет обходиться владельцу дешевле, нежели доставка бутилированной воды.

Инновационные методы обеззараживания

Самыми новыми на сегодня способами обеззараживания воды будут электрохимический и электроимпульсный. На отечественном рынке они используются в таких устройствах, как "Изумруд", "Сапфир", "Аквамарин".

Их функционирование основано на работе специального электрохимического диафрагменного реактора, через который и пропускается вода. Он, в свою очередь, разделен металлокерамической мембраной, что способна производить ультрафильтрацию на катодные и анодные зоны.

В момент, когда в анодные и катодные камеры подают ток, в них начинают образовываться растворы - щелочной и кислотный. Затем - электролитическое образование (другое его название - активный хлор). Вся эта среда отличительна тем, что в ней активно гибнет подавляющее число видов вредных микроорганизмов. Также она способна разрушать некоторые соединения, растворенные в жидкости.

Производительность представленных аппаратов главным образом зависит от двух факторов: количества рабочих элементов и их конструкции. В каких-то агрегатах используются католиты и анолиты (в основном в медицинской сфере). Подобное обеззараживание называется ЭХА-технологией.

С ней, кстати, связаны многие заблуждения. Некоторые производители устройств заявляют, что обработанная в их агрегате вода становится целебной и даже чудодейственной. Однако на деле она всего лишь очищается и обеззараживается.

Электроимпульсная же очистка - это пропускание через толщу воды электроразряда. Ударная волна сверхвысокого давления, световое излучение, образование озона - следствие воздействия. Это все вместе губительно для микроорганизмов, взвешенных в жидкости.

Мы познакомились с разными методами обеззараживания воды - простыми и комплексными, традиционными и инновационными, эффективными и безопасными для человека. Каждый из них имеет свои достоинства и недостатки. Однако ведущий фактор - безвредность для организма человека, окружающей среды.

Питьевая вода является источником жизни и здоровья человека, однако, при ее употреблении человек может приобрести множество нежелательных микроорганизмов. Как известно, все болезнетворные бактерии средой своего обитания выбирают воду, в которой могут свободно размножаться и существовать. Именно по этой причине, с развитием человечества, обострился вопрос очистки воды.

Процесс, который уничтожает микроорганизмы, находящиеся в воде, называется обеззараживанием. На сегодняшний день разработано несколько методов обеззараживания:
химические методы (хлорирование, озонирование, очистка тяжелыми металлами);
физические методы (кипячение, ультрафиолетовое излучение, электронный импульс, обеззараживание ультразвуком).

Самым простым и наиболее эффективным по праву признан способ хлорирования, но с течением времени выяснилось, что в процессе хлорирования вода насыщается разнообразными побочными продуктами, которые способны причинить вред здоровью человека. Заменил хлорирование способ обеззараживания воды воздействием ультрафиолета.

Ультрафиолет это электромагнитное излучение, которое не поддается зрительному восприятию. Под воздействием энергии фотона, химическая связь в молекуле разрывается. Повреждая молекулы ДНК и РНК, ультрафиолет уничтожает бактерии и другие микроорганизмы. Диапазон волн УФ-излучения находится в границах от 100 до 400 нм.

Дезинфекция ультрафиолетовым (УФ) излучением может использоваться как для воды, так и для воздуха, что стало реальным после изобретения специальных ламп, ртутных или ксеноновых. Дезинфекция воды УФ проводится при помощи специальных установок, в которых применяется свет с длинной волны 254 нм, такой свет способен уничтожать даже споровые формы бактерий.

Метод очищения воды действием ультрафиолета имеет множество преимуществ, к ним относятся следующие:

такое обеззараживание считается экономически выгодным вариантом, так как проведение работ требует минимальное количество затрат;
высокая эффективность полученного результата, ультрафиолет уничтожает не только вегетативные микроорганизмы, но и спорообразующие;
ультрафиолетовое излучение служит высокоточным оружием по борьбе с вредоносными микроорганизмами, оно уничтожает лишь живые микроорганизмы, при этом не воздействует на химический состав воздуха и воды;
обеззараживание ультрафиолетом может проводиться в качестве предупредительных мер, оборудование для обеззараживания послужит барьером для бактерий и вирусов;
экологическая чистота процесса, этот процесс абсолютно безопасен для жизнедеятельности человека;
другие преимущества: краткость процесса, неизменность вкусовых качеств, низкий уровень капитальных затрат, отсутствие сложностей в эксплуатационных установках.

К сожалению, как и в любом процессе очистки, здесь имеются и свои недостатки:
после обеззараживания необходима фильтрация воды, так как под действиями ультрафиолета, клетки бактерий и вирусов разрушаются, оставляя за собой различные белковые фрагменты;
после дезинфекции вода может вновь подвергнуться загрязнению, на этапе транспортировки, так как ультрафиолет после применения не остается в воде после изъятия ее из бактерицидной установки.

Воздействием ультрафиолетовых лучей применяются в ходе очистки питьевой воды, в ряде пищевых производств, иногда для очистки технической воды и даже в системах городского водоснабжения. Под воздействием ультрафиолета погибают такие микробы как E. Coli, Proteus Vulgaris, Vibrio Choleras, а также возбудители сальмонеллы, тифа и кишечная палочка.

Корпус бактерицидной установки выполнен, как правило, из нержавеющей стали. Внутри этого корпуса находятся кварцевые трубки с бактерицидными лампами. На внешней части корпуса имеется датчик, который измеряет мощность излучения. Также присутствует сигнализация, она подает сигналы в случае проникновения загрязненной воды или при повреждении облучателей.

Вода, проникая в корпус установки, проходит через бактерицидные лампы, где подвергается воздействию ультрафиолетовых лучей, тем самым очищаются от всех микроорганизмов. В ходе эксплуатации установка нуждается в периодической очистке кварцевых трубок от осадка. Состояние их загрязнения определяет датчик, измеряя интенсивность УФ–излучения.

По отношению к патогенным микроорганизмам самым эффективным способом уничтожения считается ультрафиолетовое облучение, так как вирусы здесь уничтожаются дозой в 40 мДж/см?, а им достаточно и 10-16 мДж/см?.

Технологии УФ–обеззараживания могут применяться на фоне других мероприятий по дезинфекции. Для повышения эффективности обеззараживания возможно применение обработки малыми дозами озона совместно с ультрафиолетовым облучением.

В процессе очистки питьевой воды предпочтительнее использование той технологии, что позволит исключить применение вредных химических реагентов, такой технологией стало



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта